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Abstract
Metallic nanostructures such as systems containing metal nanoparticles or nanostructured metal
films are intriguing systems of much current interest. Surface plasmons, i.e., special electronic
excitations near the metallic surfaces, can then be excited in these systems. Surface plasmons
can be intense and localized, and correctly describing their behavior in complex systems can
require numerically rigorous modeling techniques. The finite-difference time-domain (FDTD)
method is one such technique. This review discusses results obtained mostly with the FDTD
method concerning (i) local surface plasmon excitations of metal nanoparticles, (ii) surface
plasmon polariton propagation on layered structures, (ii) and periodic hole arrays in metal films.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Metallic nanostructures, including metal nanoparticles, nanos-
tructured metal films, and more complex structures containing

additional materials have been the focus of much recent atten-
tion [1–4]. Surface plasmons (SPs) can be optically excited
in such systems. SPs [5, 6], collective excitations of electrons
near the metal surfaces, can be localized and very intense near
the surface (see figure 1). The properties of SPs make metallic
nanostructures interesting for a variety of applications in op-
tics, chemical and biological sensing and optoelectronics. A
variety of acronyms are used in this review and table 1 collects
them all for easy reference.

Insight into the nature of SPs can be garnered from
inspection of the exact analytical solutions of Maxwell’s
equations available for certain problems such as Mie’s solution
for light scattering by a sphere of arbitrary complex-valued
dielectric constant [6, 7]. Approximate analytical solutions
valid in certain limits, such as the quasistatic limit of
wavelength, λ, much smaller than particle dimensions, are also
instructive. The quasistatic limit result for the polarizability, α,
of a small spherical particle of radius a [6, 8] exposed to an
electric field with angular frequency ω is

α = 4πa3 εm (ω) − εmed

εm (ω) + 2εmed
, (1)

where the dielectric constant within the sphere is εm(ω) and the
relative dielectric constant of the medium outside the sphere
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Figure 1. Schematic illustration of local surface plasmon excitations on metal nanoparticles and rough metal surfaces. The electromagnetic
field intensity (red online, gray in print) can be high and localized near the metal surfaces. The plasmon response, e.g. an optical cross section
in the case of nanoparticles, is size dependent.

Table 1. Acronyms used throughout the text and their corresponding
meanings.

SP Surface plasmon
SPP Surface plasmon polariton
LSP Localized surface plasmon
LR-SPP Long range surface plasmon polariton
FDTD Finite difference time domain
DDA Discrete dipole approximation
PML Perfectly matched layer
UPML Uniaxial perfectly matched layer
ADE Auxiliary differential equation
TF Total field
SF Scattered field
TFSF Total field/scattered field
MNP Metal nanoparticle
SERS Surface enhanced Raman spectroscopy
TM Transverse magnetic
ATR Attenuated total reflection
EOT Extraordinary optical transmission
TEM Tunneling electron microscopy
RI Refractive index

is εmed. The absorption cross section is proportionate to Im(α),
and the magnitude of the scattered electric field outside the
particle is dominated by |α|/a3. The localized surface plasmon
(LSP) resonance for the particle is associated with maxima in
the optical cross sections or when Re[εm(ω)] = −2εmed. Since
εmed is generally positive, the LSP is associated with a negative
real part of the dielectric constant. Silver and gold are popular
materials to use in metallic nanostructures owing to the fact
that they have negative real parts to their dielectric constants
in the visible spectral region. LSPs may be thought of as the
electromagnetic analog of quantum mechanical bound states.

Also of relevance are also traveling surface plasmons that
can be excited on metal films, which are called surface plasmon
polaritons (SPPs) [5]. If one considers a thin metal film sitting
on top of a substrate of relative dielectric constant εs with a
less optically dense medium above (εmed < εs), then the SPP
wavevector for propagation along the surface is given by [5]

kSPP (ω) = ω

c

(
εmedεm (ω)

εmed + εm (ω)

)1/2

, (2)

and it is possible to couple into such SPPs by passing light
at an appropriate angle up through the substrate to achieve

wavevector matching. In order to be an evanescent surface
wave that decays in the medium away from the metal surface,
the SPP must have Re[kSPP] = ω/c, which for ordinary media
with positive dielectric constants requires Re[εm] < 0.

The analysis above and its various extensions are
very useful for understanding the basic properties of
SPs [1, 2, 5, 6, 8], as well as developing ideas for exploiting
SPs in more complex nanostructures. However, in order
to validate such ideas, to predict optimal nanostructures for
specific uses, and to explore emergent phenomena not evident
from simpler considerations, more rigorous electrodynamics
calculations are required. The purpose of this topical review
is to discuss, with some emphasis on the finite-difference time-
domain method [9, 10], a variety of studies of light interacting
with metallic nanostructures.

2. Finite-difference time-domain method

The primary computational tool used in much of the work
discussed here is the finite-difference time-domain (FDTD)
method [9, 10]. This method has the advantages that
it can be applied to a variety of complex problems and
one time propagation can provide information about a wide
range of frequencies. It is also the case that, while it
can be computationally demanding, the core algorithm is
sufficiently simple and can be efficiently implemented on
parallel computers. Three-dimensional, full vector simulations
with the FDTD method are becoming more and more
routine. Nonetheless it is important to note that there
are also a variety of frequency-domain methods that can
provide numerically accurate results. The discrete dipole
approximation (DDA) [11], for example, has proved to be
very efficient and reliable for obtaining the optical properties
of metal nanoparticles [8, 12]. Other frequency-domain
approaches that have seen use in problems involving surface
plasmons include the multiple multipole method [13], integral
equation approaches [14, 15], and the vector finite element
method [16].

The FDTD method is a numerical method for solving the
time-domain Maxwell’s equations for spatiotemporal evolution
of the electric and magnetic fields. It involves representing
the fields on (staggered) grids and a leap-frog scheme for
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taking discrete time steps. These relatively simple, basic
ideas were given by Yee in his seminal 1966 paper [9].
Efficient and accurate simulations of metallic nanostructures,
however, require some sophisticated embellishments to the
basic approach. The book by Taflove and Hagness details these
more modern developments [10].

2.1. Maxwell’s time-domain equations and dielectric
dispersion

A convenient form of Maxwell’s time-domain equations for
modern implementations of the FDTD method, with metallic
nanostructures in mind, is the general form,

∂D(t)

∂ t
= ∇ × H(t), (3)

∂B(t)

∂ t
= −∇ × E(t), (4)

which involves four three-component vectors, D(t), E(t), B(t),
and H(t), each of which depends on the three spatial Cartesian
coordinates x , y and z. The optical and magnetic response of a
material occupying a given spatial region allows one to relate
D to E and B to H, thus completing the system of equations to
be solved. These relations are called constitutive relations. The
noble metal nanostructures frequently of interest in plasmonics
can be considered non-magnetic so that B(t) = μ0H(t), and
one can eliminate B(t) from the equations. (However, a useful
embellishment of the FDTD method for absorbing outgoing
waves at the grid edges does involve an artificial magnetic
aspect. See section 2.3.)

For ordinary, non-dispersive dielectric materials, D(t) =
εrε0E(t), with εr being the relative dielectric constant such
that the material’s refractive index is [εr]1/2. However, for
the metals of interest, εr is complex-valued and dispersive,
i.e., depends on frequency in the frequency-domain version of
Maxwell’s equations. In order to account for these features in
the time domain, it is convenient to first define the constitutive
relation for D in the frequency domain as

D(ω) = ε0εr (ω)E(ω)

= ε0

(
ε∞ +

∑
j

A j

ω2
j − ω2 − iγ jω

)
E(ω), (5)

where εr (ω) is expressed as a general n-pole Lorentzian
model [6], which treats electrons as a collection of n different
types of coupled harmonic oscillators and calculates their
response to a time-harmonic field with angular frequency ω.
Here ε∞ represents the high-frequency limit, and for the j th
type of oscillator, ω j is the resonant frequency and γ j is
a damping constant giving rise to absorption. Lorentzian
terms can be thought of as describing the extent to which
electrons are bound. In order to describe the motion of
free electrons within a metal, a Drude model is obtained
by setting ω j = 0. In practice, the parameters ε∞, A j ,
ω j , and γ j ( j = 1, 2, . . . , n) are optimized to fit εr (ω) to
the empirical dielectric constant data inferred from, e.g., thin
film transmission measurements [17, 18]. The number of
Drude and Lorentzian terms necessary to obtain an accurate

Figure 2. Comparison of the empirical dielectric constant data
(symbols) for silver of Johnson and Christy (JC) [17] with an
analytical Drude + 2 Lorentzian (D2L) model fit (curves) over the
300–1000 nm wavelength range.

fit over a range of frequencies may vary. For silver at optical
wavelengths, for example, one Drude and two Lorentzian terms
are usually sufficient, as illustrated in figure 2.

Equation (5) can be re-written in terms of polarization
terms, P j (ω), such that

ε0

(∑
j

A j

ω2
j − ω2 − iγω

)
E(ω) =

∑
j

P j (ω). (6)

Fourier transformation of equation (6) then leads to the time-
dependent constitutive relation for obtaining E from D:

E(t) = 1

ε0ε∞

(
D(t) −

∑
j

P j (t)

)
. (7)

An auxiliary differential equation, or ADE [10, 19], is obtained
for the j th term P j(t) in equation (7) by Fourier transforming
equation (6):

∂2P j (t)

∂ t2
+ γ j

∂P j(t)

∂ t
+ ω2

j P j (t) = ε0 A j E j(t), (8)

where the relation (−iω)n → ∂n/∂ tn was used, given
a time-dependent factor exp(−iωt). The FDTD method
then corresponds to a numerical method for solving
equations (3), (4) and (8), given equation (7). Of course one
could, with equation (5), eliminate D from consideration as
in [19]. However, given the absorption procedure frequently
used, section 2.3, it is sometimes convenient to keep it. In
the case of just a Drude metal being present, the procedure is
simpler [20].

2.2. The Yee algorithm core

The core discretization and propagation scheme behind the
FDTD method was first presented in Yee’s seminal paper [9].
It consists of a leap-frog time propagation which is second
order accurate in time. It achieves second order accuracy in
spatial derivatives in an efficient manner with staggered grids
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and is such that, in free space, Gauss’s and Ampere’s laws
are satisfied [10]. For simplicity of presentation, however,
we forgo a detailed presentation of the spatial derivative
expressions and focus on the time stepping component of the
FDTD method.

For a constant time spacing 	t , the nth time step begins
with updating D(t) in equation (3):

Dx

∣∣n+1/2 = Dx

∣∣n−1/2 + 	t

(
∂ Hz

∂y

∣∣∣∣
n

− ∂ Hy

∂z

∣∣∣∣
n)

,

Dy

∣∣n+1/2 = Dy

∣∣n−1/2 + 	t

(
∂ Hx

∂z

∣∣∣∣
n

− ∂ Hz

∂x

∣∣∣∣
n)

,

Dz

∣∣n+1/2 = Dz

∣∣n−1/2 + 	t

(
∂ Hy

∂x

∣∣∣∣
n

− ∂ Hx

∂y

∣∣∣∣
n)

,

(9)

where Dx |n+1/2 = D(x, y, z, (n + 1/2)	t), etc.
Next, each relevant polarization vector P j |n+1/2 is updated

using P j |n−1/2, P j |n−3/2, and E|n−1/2, with

P j

∣∣n+1/2 =
(

2 − (
ω j	t

)2

1 + γ j	t/2

)
P j

∣∣n−1/2

−
(

1 − γ j	t/2

1 + γ j	t/2

)
P j

∣∣n−3/2 +
(

ε0 A j	t2

1 + γ j	t/2

)
E|n−1/2 ,

(10)

which is a re-arranged form of the finite-difference analog of
equation (8). Now E|n+1/2 can be obtained easily via

E|n+1/2 = 1

ε0ε∞

(
D|n+1/2 − P|n+1/2

)
, (11)

where P|n+1/2 is the total polarization vector.
Updates for the components of B are given by

Bx

∣∣n+1 = Bx

∣∣n + 	t

(
∂ Ey

∂z

∣∣∣∣
n+1/2

− ∂ Ez

∂y

∣∣∣∣
n+1/2

)
,

By

∣∣n+1 = By

∣∣n + 	t

(
∂ Ez

∂x

∣∣∣∣
n+1/2

− ∂ Ex

∂z

∣∣∣∣
n+1/2

)

Bz

∣∣n+1 = Bz

∣∣n + 	t

(
∂ Ex

∂y

∣∣∣∣
n+1/2

− ∂ Ey

∂x

∣∣∣∣
n+1/2

)
.

(12)

If the material is non-magnetic, then H (for use at the start of
the next time step) is simply

H
∣∣n+1 = 1

μ0
B

∣∣n+1 , (13)

and the process is repeated. It is useful to note that using a
total of n Drude and/or Lorentzian terms results in n ADEs to
propagate and 2n additional P j arrays to store. To alleviate
computational effort, solution of these n additional equations
may be restricted to metallic regions of space.

2.3. Absorbing boundary conditions and source injection

The implementation of absorbing boundary conditions at the
edges of the FDTD grid is very important since otherwise

outgoing waves will be artificially reflected back into the
physical region. The most straightforward approach is to
define an absorbing layer around the grid and to damp the
fields in this layer after each time step [20]. Unfortunately,
this requires the use of a relatively large absorbing layer in
order to avoid artificial reflections and so is not practical
for three-dimensional simulations. Other approaches with
varying degrees of complexity are reviewed in [10]. Two
excellent approaches are Berenger’s perfectly matched layer
(PML) [10, 21] and Gedney’s uniaxial anisotropic perfectly
matched layer (UPML) [19, 22]. Both are consistent with
the introduction of an artificial absorbing medium and involve
impedance matching ideas to minimize reflection errors. For
the PML, the electric and magnetic field components are
split into subcomponents within the absorbing region and
additional electric/magnetic conductivities are introduced. The
UPML, on the other hand, does not split the E fields but
introduces certain constitutive relations relating D to E and
B and H in the absorbing region consistent with a dispersive,
complex, absorbing medium in the frequency domain. An
ADE approach similar in spirit to that of section 2.2 is used
to implement the UPML. Much of our own work has involved
use of UPMLs, which we have also found can be applied across
metallic regions in order to simulate infinitely extended metal
regions.

The total-field/scattered-field (TFSF) approach [10, 23]
is a useful method for injecting arbitrary source fields into
the FDTD grid. A TFSF boundary is specified within the
computational grid, separating an inner total-field (TF) region
from an outer scattered-field (SF) region. Special attention is
paid to those grid points directly located on either side of a
TFSF boundary. For example, the FDTD update equations
for a grid point in the TF region located adjacent to a TFSF
boundary involve field components on a neighboring SF grid
point. Values of the incident field must then be added to the
SF point during the FDTD update. A similar treatment is
performed for the FDTD updates on SF grid points adjacent
to the TFSF boundary, in which the incident field on the
neighboring TF grid point must be subtracted during the FDTD
update. In such a manner, an incident wave of arbitrary length,
direction and shape can easily be introduced into an FDTD
calculation without the use of large grids.

3. Illustrative studies

3.1. Local surface plasmon excitations in metal nanoparticles

The nature of the interaction of light with metallic
nanoparticles (MNPs), the role of SPs, and their characteristic
optical properties have been the focus of much experimental
and theoretical research. One can attempt to tailor the
scattering and absorbing cross sections, as well as near-
field enhancements, by varying the size, shape, composition,
and dielectric environment of MNP structures, making them
viable candidates for nanoscale optics, optoelectronics, and
chemical and biological sensing devices. Accordingly, one
needs accurate theoretical methods for characterizing and even
designing such devices. Analytical treatments based on Mie’s
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Figure 3. Extinction efficiencies for 30 and 60 nm Ag spheres using
Mie’s analytical solution to Maxwell’s equations. The dielectric
constant for Ag is based on the Lynch and Hunter [18] empirical
data. For the 30 nm particle, a sharp dipole resonance peak is seen at
∼365 nm. For the 60 nm particle, the dipole resonance peak is red
shifted to ∼427 nm, while a quadrupole peak is seen at ∼361 nm.

solutions have remained quite useful due to the fact that many
colloid prepped nanoparticles are roughly spherical. The
advent of new chemical and physical techniques, such as
e-beam lithography, capable of making very precise shapes
(spheres, prisms, shells, cubes, bipyramids, rods, triangles,
tetrahedrons, hybrid core–shell structures, etc) as well as
advancements in scientific computing have helped spur more
recent theoretical work. Another complicating factor that
Mie theory is not able to address but which is of utmost
importance for the realization of nanophotonic devices is the
interaction between particles and other particles or substrates.
For this reason, the use of more accurate numerical techniques,
such as the FDTD method described in section 2, and other
accurate methods such as the DDA method [8, 11, 12], have
been paramount. In this section, we present a brief account
of several studies involving the use of these analytical and
numerical methods to calculate the optical properties (namely
extinction and scattering efficiencies and field enhancements)
for various MNP structures.

Spheres and spheroids. We begin with a look at silver
nanospheres with radius r . Although simple in structure, the
nature of SPs for spheres and their dependence on size provide
useful insights into the more complicated MNP structures.
In [8], Kelly et al give a helpful review of the analytical
treatment of light scattering by spherical MNPs. Specifically,
they present expressions for extinction (Qext) and scattering
(Qsca) efficiencies, which include both dipole and quadrupole
type plasmon resonances. Using empirical values for the
dielectric constant of silver, εAg(λ) [18], over a wavelength
range of λ = 300–500 nm, they calculate and plot Qext(λ)

for r = 30 and 60 nm silver spheres (see figure 3). For
the r = 30 nm sphere, a single, sharp peak is seen at λ =
365 nm, corresponding to a dipole plasmon resonance. For
the r = 60 nm sphere, the dipole resonance is broadened and
red shifted approximately 62 nm. Furthermore, a noticeable
quadrupole resonance is now present at λ = 357 nm. A
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Figure 4. Results of exact numerical calculations of the extinction
spectra of oblate spheroids, all with volume corresponding to an
80 nm sphere, with incident light polarized along the major axis. The
major to minor axis aspect ratio, a/b, is varied from 1 to 10. The
main dipole resonance red shifts with increasing aspect ratio and the
quadrupole peak is quenched. Reprinted figure with permission
from [8]. Copyright 2003 by The American Chemical Society.

look at electric intensity enhancements, |E |2/|E0|2, verifies
assignments of dipole and quadrupole resonance peaks and
shows a maximum intensity enhancement of nearly 100 for the
r = 30 nm sphere and 35 for the r = 60 nm sphere.

In addition, Kelly et al present a similar analytical treat-
ment for spheroids but invoke the quasistatic approximation
(λ � r) with a modified long wavelength approximation cor-
rection, as well as numerical results based on the more com-
plex, exact analytical solutions for spheroids [8]. Due to the
loss of spherical symmetry in a spheroid, polarization of inci-
dent light becomes an important factor. For both oblate and
prolate spheroids associated with a given aspect ratio a/b of
major to minor axes, two resonances are seen each associ-
ated with the orientation of light being polarized along either
a major axis (resonance is red shifted as a/b is increased) or
a minor axis (resonance is blue shifted as a/b is increased).
These analytical treatments then are ideal to show the sensi-
tivity that optical properties of SPs exhibit with both size and
shape. Figure 4, for example, shows the shape-dependent red-
shifting of the dipolar resonance as the aspect ratio is increased.
The quadrupole resonance, which exists to the red of the dipole
resonance for the spherical limit (a/b = 1) is quenched with
increasing aspect ratio.

Rods, bipyramids, and triangular prisms. As noted above,
recent advances in fabrication of MNPs allow for size
tunability of some very specific, non-spherical shapes. As a
non-trivial example of how size and shape can affect the nature
of SPs in MNPs, we look to a study of rod-like and bipyramidal
gold nanoparticles by Liu et al [24]. With such structures, the
aspect ratio, a/b, is an adjustable parameter that can strongly
affect the nature of plasmon resonances. Liu et al focus on
variations in the optical spectra and field enhancements of
rod-like structures (cylinders capped with hemispheres) for
three increasing aspect ratios, a/b = 3.4, 4.1, and 4.8, for
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Figure 5. (a) TEM image of gold pentagonal bipyramids (with some spherical particles also present). (b) 3D pictorial representation of the
structure considered in the FDTD calculations. (c) FDTD-calculated field enhancement, |E |/|E0|, for a bipyramid with R = 15 nm,
h = 83.4 nm, and tip radius of curvature r = 3 nm. Field propagation is in the x direction with incident light at the plasmon resonance
polarized in the z direction. (d) Similar to (c) but with r = 2 nm (more pointed tips). Reprinted figure with permission from [24]. Copyright
2007 by The American Physical Society.

a fixed 14 nm diameter. Experimental and FDTD absorption
efficiencies are in good agreement and show a red shift and
spectral broadening in the longitudinal plasmon resonance for
increasing a/b (see figure 5 in [24]). Field enhancements,
|E |/|E0|, for a/b = 4.1 were calculated to be approximately
35 at the extremities, giving rise to intensity enhancements,
|E |2/|E0|2, of nearly 1225.

In [24], a similar study was performed for pentagonal
bipyramids. Figure 5(a) contains a TEM image of gold
bipyramids fabricated in aqueous solution (with spherical gold
particles also present), and (b) contains the 3D FDTD structure
modeled, with a base radius R = 15 nm, height h = 83.4 nm,
and a variable tip radius of curvature r = 4.4 nm, 3.0, or 2.0
nm. For light polarized in the longitudinal (along h) direction,
FDTD calculations show that a red shift and broadening is seen
in the plasmon resonance wavelength for increasing sharpness
(i.e. as r decreases). Figures 5(c) and (d) contain FDTD
results of the strong field enhancement for r = 3 nm and
r = 2 nm, respectively. Although not evident from the figure,
it can be shown that maximum field enhancement increases
with increasing sharpness, with |E/|E0| ≈ 140 for r =
3 nm and |E |/|E0| ≈ 200 for r = 2 nm. Such strong
near-field enhancements make the gold bipyramidal MNPs
very good candidates for use in surface enhanced Raman
scattering (SERS) type applications [8, 12], where the SERS
enhancement would be on the order of (|E |/|E0|)4 = 2004.
It is also useful to note that the inner field enhancements for
the bipyramidal structures considered are nearly 30 near the
surface (as opposed to 10 within similar sized spheres and
6 within the rod-like structures). These results also suggest
that gold bipyramidal MNPs would be useful candidates for
obtaining and studying optical nonlinearity effects.

In [8, 25], the frequency-domain DDA method is used
to calculate Qext(λ) and |E |/|E0| for silver triangular prisms
exhibiting varying degrees of tip truncations: s = 0, 5, and 10
nm, where s measures the distance at which the tip is clipped
(see figure 6). The perfect triangle (s = 0) consisted of 100 nm
edges and a 16 nm thickness, and an analysis of three distinct
peaks seen in Qext (λ) reveal a strong dipole resonance, which
for increasing values of s is blue shifted, and two small but
significant quadrupole resonance peaks, each fairly insensitive
to clipping. The existence of two quadrupole resonances for
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Figure 6. DDA calculation results of extinction efficiencies for
trigonal prisms displaying varying degrees of clipping. (Results are
an average over all incident polarizations.) For each prism, a strong
dipole resonance, which for increasing values of snip distance is blue
shifted, and two small quadrupole resonance peaks, each fairly
insensitive to clipping, are seen. Reprinted figure with permission
from [8]. Copyright 2003 by The American Chemical Society.

the silver triangular MNP is a surprise, given the fact that such
resonances become insignificant for the silver spheroid MNPs
described previously. Maximum field enhancements were seen
for the dipole resonance at the tips of the perfect triangle,
again asserting that sharper structures give rise to larger field
enhancements.

Clusters and arrays of nanoparticles

It is natural to suspect that the interactions that result as MNPs
are brought closer can further enhance local field intensities of
relevance for SERS and nonlinear processes [26, 27] in general
since such processes scale nonlinearly with the field intensity.
It is also the case that some degree of waveguiding of SP
excitations might occur in certain, engineered arrays [28, 29].

Full 3D FDTD simulations of multiple MNP configura-
tions, while certainly possible, can require large computational
domains and prohibitively large grids for accurate conver-
gence. As a consequence there have been considerably more
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Figure 7. Absorption (abs.), scattering (sca.) and extinction (ext.)
optical cross sections for a linear array of 4 silver cylinders, each
with radius a = 25 nm. (a) 5 nm spacing between cylinders.
(b) 25 nm spacing between cylinders. The smaller spacing cases give
rise to a broadened, red-shifted dipolar resonance and a lower
wavelength mixed dipolar/quadrupolar resonance. Reprinted figure
with permission from [20]. Copyright 2003 by The American
Physical Society.

studies of two-dimensional systems composed of infinitely ex-
tended metallic nanowires, e.g. [20, 27, 30, 31].

In [20], for example, Gray and Kupka use FDTD
simulations to study isolated, paired, and funnel-shaped chain
configurations of silver cylinders. It was shown that for light
in the λ = 300–500 nm range, an isolated Ag cylinder behaves
very much like a sphere with a similar radius, containing only
a single, broad dipole resonance peak in the extinction cross
section. The addition of cylinders in a closely packed linear
array (5 nm spacing between 50 nm diameter cylinders) results
in a red shift and broadening of the dipole peak and a mixed
dipole/quadrupole resonance peak resulting from the coupling
of SPs (see figure 7). Electric intensity enhancements were
found to be larger than 100 between cylinders. It was possible
to find some degree of propagation of energy down the chain,
but the effect was relatively weak owing to absorption and
scattering losses.

Finally, it is interesting to note a successful model capable
of interpreting the optical spectra for MNPs and coupled
systems of MNPs, known as the plasmon hybridization model
of Nordlander and co-workers [32, 33]. The model is similar in

spirit to quantum molecular orbital theory in that the plasmon
response of a more complex structure can be considered as
hybridizations of localized SPs on more elementary structures
that interact due to the finite distance between them.

3.2. Surface plasmon polariton propagation in layered
structures

So far we have discussed the properties of stationary LSP
excitations on MNPs. It is also of interest to propagate or
waveguide surface plasmon excitations within or on some
structure. While arrays of MNPs may provide one avenue for
such propagation [28, 29], the generation and manipulation
of SPPs [5] in structures involving thin films is also of
interest [34–37]. In such applications, it is desirable to have
propagation distances as long as possible, though limiting
factors can include energy loss due to scattering and absorption
by the metal. In this section we consider several different
proposed methods for increasing SPP propagation lengths,
either by limiting absorption or minimizing the effect of
scattering loss.

One common approach to increase propagation distances
(relative to an isolated SPP on a semi-infinite metallic slab)
is to couple the SPP into a waveguide composed of a thin
(<100 nm) metallic core with symmetric or nearly symmetric
dielectric cladding. The idea, suggested by Sarid in [38],
is that for a thick metal, two degenerate transverse magnetic
(TM) SPP modes exist, one at each metal/dielectric interface.
However, as the thickness of the metal decreases, these TM
modes can interfere to give rise to a long-range ‘symmetric’
mode (LR-SPP) and a short-range ‘asymmetric’ mode, where
symmetry is with respect to the transverse magnetic field
component within the metal. In the case of the LR-SPP, the
field intensity is decreased within the metal, thereby reducing
the effect of absorption, leading to predicted propagation
lengths of more than an order of magnitude longer compared
to isolated SPP values. LR-SPPs have been experimental
verified [39, 40].

It is also possible to increase propagation distances using
more asymmetric waveguide structures. Here we focus on one
described in [41], where Lee and Gray use the FDTD approach
to study the effects of varying metal and core thicknesses
within an asymmetric SPP waveguide. The structure (see
figure 8) involves a 3-layer excitation region composed of
dielectric cladding layers 1 and 2, with ε2 > ε1, and a metallic
core with complex, frequency-dependent εm and Re(εm) < 0.
Within this region, an SPP is launched along the layer
1/metal interface using a Kretschmann–Raether attenuated
total reflection (ATR) [5] approach. Immediately adjacent to
the excitation region is a 4-layer propagation region, in which
an additional dielectric layer 3 is added beneath layer 2, where
now ε2 > ε1, ε3. For a fixed incidence angle (θ = 44.8◦) and
wavelength (λ = 532 nm), the metal thickness, tm, and layer
2 (core) thickness, d , are varied, and for each thickness the
SPP propagation distance, Lx , is computed by fitting electric
field intensities for a fixed distance above the metal surface
to an exponential: C exp(−x/Lx). Sample FDTD results for
the electric field intensities are given in figure 9 for a 30 nm
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Figure 8. Waveguide structure of [41] and [42] including
interpretation of SPP regeneration. Layers 1, 2, and 3 are dielectric
materials with dielectric constants ε1, ε2, and ε3. The thickness, d , of
dielectric layer 2 underneath the metal is a key variable. Between
layers 2 and 3 there is a thin metal film of thickness, tm, and
frequency-dependent, complex dielectric constant, εm. Reprinted
figure with permission from [42]. Copyright 2008 by The American
Physical Society.

silver film on glass (ε2 = 2.25) with air for layers 1 and 3.
Figure 9(a) corresponds to a standard SPP (d = ∝), and
figure 9(b) corresponds to a 50 nm glass core thickness. It was
found that small core (glass) and metal film thicknesses yielded
the most dramatic enhancements, nearly 18× the standard SPP
propagation length of ∼2 μm. The explanation presented
in [41] is that SPPs excited at the layer 1/metal interface within
the excitation region enter the adjacent propagation region,
where the presence of the additional dielectric layer 3, with
ε3 < ε2, gives rise to total internal reflection at the 2/3
interface. Reflected radiation, which would have otherwise
been lost, is directed back towards the metal at the proper angle
for regenerating SPPs.

In [42], a more extensive study of Lx(d) was performed.
For the same incident wavelength, λ = 532 nm, excitation
angle, θ = 44.8◦, and a fixed metal thickness, tm = 30 nm,
an oscillatory behavior was seen in Lx as d increased from 0 to
650 nm (see figure 10), with maximum enhancements of nearly
30 times the standard SPP propagation distance. A frequency-
domain modal analysis of the 4-layer propagation region based
on Yeh’s 2×2 matrix method [43] showed that the dependence
of Lx on d is due to the tuning of d to different allowed TM
waveguide modes.

Another asymmetric SPP waveguide involves adding a
polymer ridge with finite width, w, and thickness, h, atop a
metal layer supported by glass, for example [44–46]. The-
oretical studies using finite element techniques [46] showed
enhanced SPP propagation lengths and field confinement at
telecom wavelengths for optimal values of ridge dimensions
w and h on a gold surface. It is also possible to efficiently
guide light in complementary waveguides, composed of di-
electric cores with subwavelength widths in gold and silver
claddings [47, 48].

Figure 9. FDTD results for the time-averaged electric field
intensities for the structure in figure 8 with (a) d = ∞ (conventional
ATR) and (b) d = 50 nm. In each case, the incident field intensity is
given by 〈E 2

inc〉t = 0.5 V2 m−2, and the maximum field intensity
occurs in the excitation region near x = 7 μm, for which
〈E2〉t = 10 V2 m−2. However, intensities �3 V2 m−2 are represented
by yellow online, white in print, as indicated in (a).

Figure 10. R-SPP propagation length Lx , as a function of the glass
core thickness, d , for the waveguide structure in figure 8 [41, 42].
Lx determined by fitting electric field intensities at a fixed distance
above the metal surface to C exp(−x/Lx ). Adapted from [42].

3.3. Periodic hole arrays in metal films

In 1998 Ebbesen et al [49] presented experimental results
showing that periodic arrays of subwavelength holes in a metal
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Figure 11. Nanohole or nanowell arrays exhibit complex light transmission spectra of relevance to chemical and biological sensing. High and
localized electromagnetic field intensities result from surface plasmon excitations (right-most image). The specific system illustrated is a
depiction of the plasmonic crystal developed by Rogers, Nuzzo and their co-workers [58].

film can exhibit structured light transmission spectra with peak
maxima corresponding to a surprising amount of transmission
in comparison with expectations based on Bethe–Bouwkamp
theory [50, 51]. See figure 11 for a schematic illustration of
the type of system under consideration. Bethe–Bouwkamp
theory is an analytical treatment of light transmission by a hole
in a perfect metal that cannot support SP excitations. This
extraordinary optical transmission (EOT) phenomenon is also
very sensitive to the nature of any substrate placed over the
holes and so many researchers have explored the possibility
of developing chemical and biological sensors based on such
systems [52].

Ebbesen et al concluded the EOT observed for hole arrays
in real metals was related, in part, to the periodic analog of
SPPs, which we will term SPP Bloch waves. These waves may
be understood as standing waves formed from superpositions
of counter-propagating SPPs excited via a grating coupling
mechanism. For a square array of holes with periodicity P in
a metal film with dielectric constant εm (λ), simple arguments
lead to the prediction that SPP Bloch waves would occur near
the discrete incident wavelengths, λ = λSPP−BW [49, 53] such
that

λSPP−BW = P(
j 2 + k2

)1/2

(
εXεm (λSPP−BW)

εX + εm (λSPP−BW)

)1/2

, (14)

with j and k being integers. In equation (14), εX denotes the
dielectric constant of the material interfacing with the metal,
and there can be SPP Bloch waves associated with either the
top or bottom interface.

While these systems appear to be very simple, a variety of
other phenomena can occur including more diffractive features
such as Rayleigh anomalies (also sometimes called Wood
anomalies) which can be close to the wavelengths predicted
by equation (14), as well as LSP excitations about the holes
and waveguide modes. The condition for a Rayleigh anomaly
is simply

λRA = P(
j 2 + k2

)1/2 (εX )1/2 . (15)

As a consequence of all the possible phenomena that can
occur in these systems, there has been some debate in the

literature about the relative importance of the various features
contributing to EOT. Some researchers also suggested a new
type of surface wave that is unrelated to SPPs, which they
called a composite diffracted evanescent wave (CDEW), as
being important in EOT [54, 55]. However, subsequent
physical and mathematical analysis, coupled with FDTD
simulations, have shed some doubt on the existence of such
waves [56].

It is relatively straightforward to apply periodic boundary
conditions to the three-dimensional FDTD equations of
section 2.2 and to study such hole arrays systems with the
incident light coming up normal to the surface. (While
possible, it is technically more challenging to study non-
normal incidence on periodic structures with the FDTD
method, especially if a range of wavelengths is of interest [10].)
Here we will discuss three particular FDTD studies of light
transmission by periodically structured metallic nanosystems
in three dimensions [57–59]. Other three-dimensional FDTD
studies of such systems include [60–63].

In the first study, Chang et al [57] examined square arrays
of 200 nm diameter holes in 100 nm thick gold films on top
of a glass substrate (with air above the hole system), with
incident light ranging from λ = 500–1000 nm. A normalized
transmission is defined as Tn = (Ftot − Ffilm)/(Iincπa2), where
Ftot is the transmitted flux for the hole system integrated over
the top area of the unit cell, Ffilm is the same quantity but
for the problem of a gold film with no holes in it, Iinc is the
incident flux and a is the radius of a hole. This transmission is
displayed for the specific hole array system of [57] in figure 12.
It turns out that many of the transmission minima in figure 12
correlate well with the zero order SPP Bloch wave positions
predicted by equation (14). Intuitively, one can imagine energy
being channeled into these SPPs which, to zero order, do not
directly transmit light because of their evanescent character.
The reality is, however, that these SPPs are coupled to light
that is being directly transmitted both through the holes and
through the film. The nature of this coupling turns out to be
well described by Fano’s model of a discrete state interacting
with a continuum state which leads to asymmetric transmission
profiles that include a minimum followed by a maximum [64].
This idea was first suggested in [65] and [66]. In the present,
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Figure 12. Normalized optical transmission for the periodic hole
array in a gold film discussed in the text. Reprinted figure with
permission from [57]. Copyright 2005 by the Optical Society of
America.

classical electrodynamics context [57] showed that a multiple
Fano resonance model involving just a few parameters could
accurately fit the FDTD results, as also indicated in figure 12.
Reference [57] also showed, in addition to SPP-BWs and RAs,
that LSP excitations around the holes can play an important
role. LSP excitations around holes are complementary to
the LSP excitations in nanoparticles and can exhibit similar
properties [35, 67, 68].

The second periodic hole array study of interest is the
combined experimental and theoretical study of Stewart et al
[58], which involved depositing a thin gold film over a polymer
structure that was imprinted with cylindrical wells. The result
was a gold film on top of the polymer with a square hole array,
and at the bottom of each hole was a gold disk, as schematically
illustrated in figure 11. As in [57], a variety of transmission
features were identified. However, whereas reference [57]
had just air on top of the array, reference [58] examined
how the transmission features change as the refractive index
(RI) of the material on top varies. It was found that some
spectral features were far more sensitive than others, and the
origins of this sensitivity were traced to plasmon resonances
connecting top hole structures with the bottom disk structures.
One such resonance is illustrated in the right-hand side panel
of figure 11. Another feature of this work was that to obtain
good agreement with experiment, it was necessary to introduce
small imperfections into the theoretical structure. Specifically,
when some excess pile up of gold around the edges of the disk
was included, which was consistent with TEM images of the
actual sample, the transmission of the most sensitive spectral
structure changed by more than 10% becoming in better accord
with experiment.

The final hole array study we wish to highlight was
another combined experimental and theoretical effort. In
this work, McMahon et al [59] examined simple square hole
arrays in gold films on glass, much like those in the first
study we noted of Chang et al [57]. As in the work of
Stewart et al [58], though, the sensitivity of the transmission

to the RI of a substrate was examined. It was shown, in
particular, that it is possible to engineer features of the array,
e.g. its periodicity, such that particularly sensitive spectral
peaks occur in a specific RI range of interest. This suggests
the possibility of tailoring the design hole array systems for
sensing in particular RI ranges. The basis for this was the
concept of coupling an SPP Bloch wave with a Rayleigh
anomaly. Equations (14) and (15) could be used to predict an
optimal periodicity such that an SPP Bloch wave and Rayleigh
anomaly occurred at the same incident wavelength for a given
upper substrate RI. With such an array, when one considers
a range of samples with RI passing through this particular RI
one will see a strong rise in the transmission. This idea was
validated and explored further with FDTD calculations and
also demonstrated experimentally [59].

4. Concluding remarks

We discussed the theory and modeling of light interactions
with metallic nanostructures, placing some emphasis on results
obtained with a rigorous computational electrodynamics
method, the FDTD method [9, 10].

Metallic nanostructures and hybrid structures containing
them are of key importance to the exciting area of nanoscience
called nanophotonics [1–4]. Of particular interest is the
creation and manipulation of surface plasmon (SP) excitations,
which at the continuum electrodynamics level are certain
evanescent surface wave solutions to Maxwell’s equations. SPs
are localized in one direction and can be quite intense. Such
properties make them of interest for a variety of practical
applications including, for example, chemical and biological
sensing [52].

Analytical models ranging from exact solutions to
Maxwell’s equations for spheroids and solutions appropriate to
certain limits, e.g. the quasistatic limit, have provided the basic
foundations for our understanding of SPs. However, the greater
variety of particle shapes and complex metallic structures
that can now be fabricated using nanotechnology cannot be
quantitatively described with such approaches. When correctly
applied and complemented by careful physical analysis, the
FDTD method can provide insight into these systems. In this
review we discussed the results of a variety of (mostly) FDTD
studies ranging from relatively simple metal nanoparticles as
in [24] dominated by local surface plasmon excitations to
relatively complex periodically nanostructured systems such
as in [57–60] where a variety of plasmonic and diffractive
phenomena compete.
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